Closing in on the C. elegans ORFeome by cloning TWINSCAN predictions

Author:

Wei Chaochun,Lamesch Philippe,Arumugam Manimozhiyan,Rosenberg Jennifer,Hu Ping,Vidal Marc,Brent Michael R.

Abstract

The genome of Caenorhabditis elegans was the first animal genome to be sequenced. Although considerable effort has been devoted to annotating it, the standard WormBase annotation contains thousands of predicted genes for which there is no cDNA or EST evidence. We hypothesized that a more complete experimental annotation could be obtained by creating a more accurate gene-prediction program and then amplifying and sequencing predicted genes. Our approach was to adapt the TWINSCAN gene prediction system to C. elegans and C. briggsae and to improve its splice site and intron-length models. The resulting system has 60% sensitivity and 58% specificity in exact prediction of open reading frames (ORFs), and hence, proteins–the best results we are aware of any multicellular organism. We then attempted to amplify, clone, and sequence 265 TWINSCAN-predicted ORFs that did not overlap WormBase gene annotations. The success rate was 55%, adding 146 genes that were completely absent from WormBase to the ORF clone collection (ORFeome). The same procedure had a 7% success rate on 90 Worm Base “predicted” genes that do not overlap TWINSCAN predictions. These results indicate that the accuracy of WormBase could be significantly increased by replacing its partially curated predicted genes with TWINSCAN predictions. The technology described in this study will continue to drive the C. elegans ORFeome toward completion and contribute to the annotation of the three Caenorhabditis species currently being sequenced. The results also suggest that this technology can significantly improve our knowledge of the “parts list” for even the best-studied model organisms.

Publisher

Cold Spring Harbor Laboratory

Subject

Genetics(clinical),Genetics

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3