State-dependent effectiveness of cathodal transcranial direct current stimulation on cortical excitability

Author:

Vergallito Alessandra,Varoli Erica,Pisoni AlbertoORCID,Mattavelli Giulia,Del Mauro Lilia,Feroldi Sarah,Vallar Giuseppe,Romero Lauro Leonor J.

Abstract

AbstractThe extensive use of transcranial direct current stimulation (tDCS) in experimental and clinical settings does not correspond to an in-depth understanding of its underlying neurophysiological mechanisms. In previous studies, we employed an integrated system of Transcranial Magnetic Stimulation and Electroencephalography (TMS-EEG) to track the effect of tDCS on cortical excitability. At rest, anodal tDCS (a-tDCS) over the right Posterior Parietal Cortex (rPPC) elicits a widespread increase in cortical excitability. In contrast, cathodal tDCS (c-tDCS) fails to modulate cortical excitability, being indistinguishable from sham stimulation.Here we investigated whether an endogenous task-induced activation during stimulation might change this pattern, improving c-tDCS effectiveness in modulating cortical excitability.In Study 1, we tested whether performance in a Visuospatial Working Memory Task (VWMT) and a modified Posner Cueing Task (mPCT), involving rPPC, could be modulated by c-tDCS. Thirty-eight participants were involved in a two-session experiment receiving either c-tDCS or sham during tasks execution. In Study 2, we recruited sixteen novel participants who performed the same paradigm but underwent TMS-EEG recordings pre- and 10 minutes post-sham and c-tDCS.Behavioral results showed that c-tDCS significantly modulated mPCT performance compared to sham. At a neurophysiological level, c-tDCS significantly reduced cortical excitability in a frontoparietal network involved in task execution. Taken together, our results provide evidence of the state dependence of c-tDCS in modulating cortical excitability effectively. The conceptual and applicative implications are discussed.

Publisher

Cold Spring Harbor Laboratory

Reference88 articles.

1. Modulation of attention networks serving reorientation in healthy aging;Aging (Albany NY),2020

2. Ashburner, J. , Barnes, G. , & Chen, C. (2011). Functional imaging laboratory: wellcome trust centre for neuroimaging. SPM8 Manual. London, UK.

3. Mixed-effects modeling with crossed random effects for subjects and items

4. TDCS increases cortical excitability: Direct evidence from TMS-EEG

5. Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). lme4: Linear mixed-effects models using Eigen and S4. R package version 1. 1–7. 2014.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3