Membrane potential phase shifts differ for excitation vs. inhibition in resonant pyramidal neurons: a computer modeling study

Author:

Kelley CraigORCID,Antic Srdjan D.ORCID,Carnevale Nicholas T.,Kubie John L.ORCID,Lytton William W.ORCID

Abstract

AbstractRhythmic activity is ubiquitous in neural systems, and impedance analysis has been widely used to examine frequency-dependent responses of neuronal membranes to rhythmic inputs. Impedance analysis assumes the neuronal membrane is a linear system, requiring the use of small signals to stay in a near-linear regime. However, postsynaptic potentials are often large and trigger nonlinear mechanisms. We therefore augmented impedance analysis to evaluate membrane responses in this nonlinear domain, analyzing responses to injected current for subthreshold membrane voltage (Vmemb), suprathreshold spike-blocked Vmemb, and spiking in a validated neocortical pyramidal neuron computer model. Responses in these output regimes were asymmetrical, with different phase shifts during hyperpolarizing and depolarizing half-cycles. Suprathreshold chirp stimulation gave equivocal results due to nonstationarity of response, requiring us to use fixed-frequency sinusoids. Sinusoidal inputs producedphase retreat: action potentials occurred progressively later in cycles of the input stimulus, resulting from adaptation. Conversely, sinusoidal current with increasing amplitude over cycles produced a pattern ofphase advance: action potentials occurred progressively earlier. Phase retreat was dependent onIhandIAHPcurrents; phase advance was modulated by these currents. Our results suggest differential responses of cortical neurons depending on the frequency of oscillatory input in the delta – beta range, which will play a role in neuronal responses to shifts in network state. We hypothesize that intrinsic cellular properties complement network properties and contribute toin vivophase-shift phenomena such as phase precession, seen in place and grid cells, and phase roll, observed in hippocampal CA1 neurons.New & NoteworthyWe augmented electrical impedance analysis to characterize phase shifts between large amplitude current stimuli and nonlinear, asymmetric membrane potential responses. We predict different frequency-dependent phase shifts in response excitation versus inhibition, as well as shifts in spike timing over multiple input cycles, in resonant pyramidal neurons. We hypothesize that these effects contribute to navigation-related phenomena like phase precession and phase roll. Our neuron-level hypothesis complements, rather than falsifies, prior network-level explanations of these phenomena.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3