Spatially selective open loop control of magnetic microrobots for drug delivery

Author:

Mirkhani NimaORCID,Christiansen Michael G.ORCID,Gwisai TinotendaORCID,Menghini Stefano,Schuerle SimoneORCID

Abstract

AbstractRotating magnetic fields (RMFs), when used to actuate biomedical microrobots for targeted delivery to tumors, have been shown to enable them to overcome physiological barriers and promote their accumulation and penetration into tissue. Nevertheless, directly applying a RMF to a deeply situated target site also leads to off-target actuation in surrounding healthy tissue. Here, we investigate an open-loop control strategy for delivering torque density to diffuse distributions of microrobots at focal points by combining RMFs with magnetostatic gating fields. Taking magnetotactic bacteria (MTB) as a model biohybrid microrobotic system for torque-based actuation, we first use simulation to elucidate off-target torque suppression and find that resolution is set by the relative magnitude of the magnetostatic field and RMF. We study focal torque delivery in vitro, observing off-target suppression of translational velocity of MTB, convection-driven accumulation of companion nanoparticles, and tumor spheroid colonization. We then design, construct, and validate a mouse-scale torque-focusing apparatus incorporating a permanent magnet array, three-phase RMF coils, and offset coils to maneuver the focal point. Our control scheme enables the advantages of torque-based actuation to be combined with spatial targeting, and could be broadly applied to other microrobotic designs for improved drug delivery.One-Sentence Summary:Combining rotating magnetic fields with gating fields enables focused delivery of torque density to dispersed microrobots.

Publisher

Cold Spring Harbor Laboratory

Reference49 articles.

1. Transport of drugs from blood vessels to tumour tissue

2. Analysis of nanoparticle delivery to tumours;Nature Reviews Materials,2016

3. It all comes down to the dose;Nature Reviews Materials,2020

4. The dose threshold for nanoparticle tumour delivery;Nat. Mater,2020

5. Engineering precision nanoparticles for drug delivery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3