MAUDGAN: Motion Artifact Unsupervised Disentanglement Generative Adversarial Network of Multicenter MRI Data with Different Brain tumors

Author:

Safari MojtabaORCID,Fatemi Ali,Archambault Louis

Abstract

AbstractPurposeThis study proposed a novel retrospective motion reduction method named motion artifact unsupervised disentanglement generative adversarial network (MAUDGAN) that reduces the motion artifacts from brain images with tumors and metastases. The MAUDGAN was trained using a mutlimodal multicenter 3D T1-Gd and T2-fluid attenuated inversion recovery MRI images.ApproachThe motion artifact with different artifact levels were simulated ink-space for the 3D T1-Gd MRI images. The MAUDGAN consisted of two generators, two discriminators and two feature extractor networks constructed using the residual blocks. The generators map the images from content space to artifact space and vice-versa. On the other hand, the discriminators attempted to discriminate the content codes to learn the motion-free and motion-corrupted content spaces.ResultsWe compared the MAUDGAN with the CycleGAN and Pix2pix-GAN. Qualitatively, the MAUDGAN could remove the motion with the highest level of soft-tissue contrasts without adding spatial and frequency distortions. Quantitatively, we reported six metrics including normalized mean squared error (NMSE), structural similarity index (SSIM), multi-scale structural similarity index (MS-SSIM), peak signal-to-noise ratio (PSNR), visual information fidelity (VIF), and multi-scale gradient magnitude similarity deviation (MS-GMSD). The MAUDGAN got the lowest NMSE and MS-GMSD. On average, the proposed MAUDGAN reconstructed motion-free images with the highest SSIM, PSNR, and VIF values and comparable MS-SSIM values.ConclusionsThe MAUDGAN can disentangle motion artifacts from the 3D T1-Gd dataset under a multimodal framework. The motion reduction will improve automatic and manual post-processing algorithms including auto-segmentations, registrations, and contouring for guided therapies such as radiotherapy and surgery.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3