Abstract
SummaryMalaria remains one of the most devastating infectious diseases. Reverse genetic screens offer a powerful approach to identify genes and molecular processes governing malaria parasite biology. However, sexual reproduction and complex regulation of gene expression and genotype-phenotype associations in the mosquito have hampered the development of screens in this key part of the parasite lifecycle. We designed a genetic approach in the rodent parasitePlasmodium berghei, which in conjunction with barcode sequencing allowed us to overcome the fertilization roadblock and screen for gametocyte-expressed genes required for parasite infection of the mosquitoAnopheles coluzzii. The results confirmed previous findings, validating our approach for scaling up, and identified new genes required for ookinete motility and mosquito midgut infection and for sporozoite development and oocyst egress and salivary gland infection. Our findings can assist efforts to study malaria transmission biology and develop new interventions to control disease transmission.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献