ELITE: Expression deconvoLution using lInear optimizaTion in bulk transcriptomics mixturEs

Author:

Antoranz AsierORCID,Mackintosh Carlos,Ortiz María,Pey Jon

Abstract

AbstractUnderstanding the cellular composition of tissue samples is crucial for identifying the molecular mechanisms underlying diseases and developing cellular targets for therapeutic interventions. Digital cytometry methods have been developed to predict tissue composition from bulk transcriptomic data, avoiding the high cost associated with single-cell profiling. Here, we present ELITE, a new digital cytometry method that utilizes linear programming to solve the deconvolution problem. ELITE uses as inputs a mixture matrix representing bulk measurements, and a signature matrix representing molecular fingerprints of the cell types to be identified. The signature matrix can be obtained from single-cell datasets or the literature, making ELITE more flexible than other methods that rely solely on single-cell data. We evaluated ELITE on three publicly available single-cell datasets and compared it with five other deconvolution methods, showing superior performance, particularly when there were cell types with similar expression profiles. As a case study, we evaluated the prediction of tumor cellularity using purity estimates from 20 different TCGA carcinoma datasets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3