Author:
Mar Daniel,Babenko Ilona M.,Zhang Ran,Noble William Stafford,Denisenko Oleg,Vaisar Tomas,Bomsztyk Karol
Abstract
BackgroundThe multiome is an integrated assembly of distinct classes of molecules and molecular properties, or “omes,” measured in the same biospecimen. Freezing and formalin-fixed paraffin-embedding (FFPE) are two common ways to store tissues, and these practices have generated vast biospecimen repositories. However, these biospecimens have been underutilized for multi-omic analysis due to the low throughput of current analytical technologies that impede large-scale studies.MethodsTissue sampling, preparation, and downstream analysis were integrated into a 96-well format multi-omics workflow, MultiomicsTracks96. Frozen mouse organs were sampled using the CryoGrid system, and matched FFPE samples were processed using a microtome. The 96-well format sonicator, PIXUL, was adapted to extract DNA, RNA, chromatin, and protein from tissues. The 96-well format analytical platform, Matrix, was used for chromatin immunoprecipitation (ChIP), methylated DNA immunoprecipitation (MeDIP), methylated RNA immunoprecipitation (MeRIP), and RNA reverse transcription (RT) assays followed by qPCR and sequencing. LC-MS/MS was used for protein analysis. The Segway genome segmentation algorithm was used to identify functional genomic regions, and linear regressors based on the multi-omics data were trained to predict protein expression.ResultsMultiomicsTracks96 was used to generate 8-dimensional datasets including RNA-seq measurements of mRNA expression; MeRIP-seq measurements of m6A and m5C; ChIP-seq measurements of H3K27Ac, H3K4m3, and Pol II; MeDIP-seq measurements of 5mC; and LC-MS/MS measurements of proteins. We observed high correlation between data from matched frozen and FFPE organs. The Segway genome segmentation algorithm applied to epigenomic profiles (ChIP-seq: H3K27Ac, H3K4m3, Pol II; MeDIP-seq: 5mC) was able to recapitulate and predict organ-specific super-enhancers in both FFPE and frozen samples. Linear regression analysis showed that proteomic expression profiles can be more accurately predicted by the full suite of multi-omics data, compared to using epigenomic, transcriptomic, or epitranscriptomic measurements individually.ConclusionsThe MultiomicsTracks96 workflow is well suited for high dimensional multi-omics studies – for instance, multiorgan animal models of disease, drug toxicities, environmental exposure, and aging as well as large-scale clinical investigations involving the use of biospecimens from existing tissue repositories.
Publisher
Cold Spring Harbor Laboratory