Flux exponent control predicts metabolic dynamics from network structure

Author:

Xiao FangzhouORCID,Li Jing ShuangORCID,Doyle John C.ORCID

Abstract

AbstractMetabolic dynamics such as stability of steady states, oscillations, lags and growth arrests in stress responses are important for microbial communities in human health, ecology, and metabolic engineering. Yet it is hard to model due to sparse data available on trajectories of metabolic fluxes. For this reason, a constraint-based approach called flux control (e.g., flux balance analysis) was invented to split metabolic systems into known stoichiometry (plant) and unknown fluxes (controller), so that data can be incorporated as refined constraints, and optimization can be used to find behaviors in scenarios of interest. However, flux control can only capture steady state fluxes well, limiting its application to scenarios with days or slower timescales. To overcome this limitation and capture dynamic fluxes, this work proposes a novel constraint-based approach, flux exponent control (FEC). FEC uses a different plant-controller split between the activities of catalytic enzymes and their regulation through binding reactions. Since binding reactions effectively regulate fluxes’ exponents (from previous works), this yields the rule of FEC, that cells regulate fluxes’ exponents, not the fluxes themselves as in flux control. In FEC, dynamic regulations of metabolic systems are solutions to optimal control problems that are computationally solvable via model predictive control. Glycolysis, which is known to have minute-timescale oscillations, is used as an example to demon-strate FEC can capture metabolism dynamics from network structure. More generally, FEC brings metabolic dynamics to the realm of control system analysis and design.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3