Abstract
ABSTRACTType 9 secretion system (T9SS) is one of the least characterized secretion systems exclusively found in theBacteroidetesphylum which comprise various environmental and economically relevant bacteria. While T9SS plays a central role in bacterial movement termed gliding motility, survival and pathogenicity, there is an unmet need for a comprehensive tool that predicts T9SS, gliding motility and proteins secreted via T9SS. In this study, we develop such a computational tool, Type 9 secretion system and Gliding motility Prediction (T9GPred). To build this tool, we manually curated published experimental evidence and identified mandatory components for T9SS and gliding motility prediction. We also compiled experimentally characterized proteins secreted via T9SS and determined the presence of three unique types of C-terminal domain signals, and these insights were leveraged to predict proteins secreted via T9SS. Notably, using recently published experimental evidence, we show that T9GPred has high predictive power. Thus, we used T9GPred to predict the presence of T9SS, gliding motility and associated secreted proteins across 693 completely sequencedBacteroidetesstrains. T9GPred predicted 402 strains to have T9SS, of which 327 strains are also predicted to exhibit gliding motility. Further, T9GPred also predicted putative secreted proteins for the 402 strains. In a nutshell, T9GPred is a novel computational tool for systems-level prediction of T9SS and streamlining future experimentation. The source code of the computational tool is available in our GitHub repository:https://github.com/asamallab/T9GPred. The tool and its predicted results are compiled in a web server available at:https://cb.imsc.res.in/t9gpred/.
Publisher
Cold Spring Harbor Laboratory