Functional convergence underground? The scale-dependency of community assembly processes in European cave spiders

Author:

Mammola StefanoORCID,Graco-Roza Caio,Ballarin Francesco,Hesselberg Thomas,Isaia Marco,Lunghi Enrico,Mouron Samuel,Pavlek Martina,Tolve Marco,Cardoso PedroORCID

Abstract

AbstractUnderstanding how species assemble into communities is a central tenet in ecology. One of the most elusive questions is the relative contribution of environmental filtering versus limiting similarity. Important advances in this area have been achieved by looking at communities through a functional lens (i.e., the traits they express), so as to derive principles valid across species pools. Yet, even using traitsin lieuof taxonomy, the issue remains controversial because i) environmental filtering and limiting similarity often act simultaneously in shaping communities; and ii) their effect is scale-dependent. We exploited the experimental arena offered by caves, island-like natural laboratories characterized by largely constant environmental gradients and a limited diversity of species and interactions. Leveraging uniquely available data on distribution and traits for European cave spiders, we tested explicit hypotheses about variations in community assembly rules across ecological gradients and scales. We demonstrate that environmental filtering and limiting similarity shape cave communities acting on trait evolution in opposing directions. These effects are strongly scale dependent, varying along multiple environmental gradients. Conversely, the effect of geography on trait composition is weak, indicating that trait turnover in space happens primarily by substitution of species pursuing similar functions due to strong environmental filters. Our findings reconcile contrasted views about the relative importance of the two main mechanisms shaping patterns of biodiversity, and provide a conceptual foundation to account for scaling effects in the study of community assembly.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3