Abstract
ABSTRACTThe CLC-ec1 chloride/proton antiporter is a membrane embedded homodimer where subunits can dissociate and associate, but the thermodynamic driving forces favor the assembled form at biological densities. Yet, the physical reasons for this stability are confounding since binding occurs via the burial of hydrophobic protein interfaces yet the hydrophobic effect should not apply since there is little water within the membrane. To investigate this further, we quantified the thermodynamic changes associated with CLC dimerization in membranes by carrying out a van ′t Hoff analysis of the temperature dependency of the free energy of dimerization,ΔG°. To ensure that the reaction reached equilibrium under changing conditions, we utilized a Förster Resonance Energy Transfer based assay to report on the relaxation kinetics of subunit exchange as a function of temperature. These equilibration times were then applied to measure CLC-ec1 dimerization isotherms as a function of temperature using the single-molecule subunit-capture photobleaching analysis approach. The results demonstrate that the dimerization free energy of CLC inE. colimembranes exhibits a non-linear temperature dependency corresponding to a large, negative change in heat capacity, a signature of solvent ordering effects including the hydrophobic effect. Consolidating this with our previous molecular analyses suggests that the non-bilayer defect required to solvate the monomeric state is the molecular source of this large change in heat capacity and is a major and generalizable driving force for protein association in membranes.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献