A Novel Silver-Containing Antimicrobial potentiates aminoglycoside activity againstPseudomonas aeruginosa

Author:

Donkor Gracious Yoofi,Anderson Greg M.,Stadler Michael,Tawiah Patrick Ofori,Orellano Carl D.,Edwards Kevin A.,Dahl Jan-UlrikORCID

Abstract

ABSTRACTThe rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments into novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX®, a broad-spectrum silver containing antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX® could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogenPseudomonas aeruginosa, we screened possible synergistic effects of AGXX® on several antibiotic classes. We found that the combination of AGXX® and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX®/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally,P. aeruginosastrains deficient in ROS detoxifying/repair genes were more susceptible to AGXX®/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX®/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials.IMPORTANCEThe emergence of drug-resistant bacteria coupled with the decline in antibiotic development highlights the need for novel alternatives. Thus, new strategies aimed at repurposing conventional antibiotics have gained significant interest. The necessity of these interventions is evident especially in gram-negative pathogens as they are particularly difficult to treat due to their outer membrane. This study highlights the effectiveness of the silver containing antimicrobial AGXX® in potentiating aminoglycoside activities againstP. aeruginosa. The combination of AGXX® and aminoglycosides not only reduces bacterial survival rapidly but also significantly re-sensitizes aminoglycoside-resistantP. aeruginosastrains. In combination with gentamicin, AGXX® induces increased endogenous oxidative stress, membrane damage and iron sulfur cluster disruption. These findings emphasize AGXX®’s potential as a route of antibiotic adjuvant development and shed light into potential targets to enhance aminoglycoside activity.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3