Abstract
ABSTRACTThe rapid dissemination of antibiotic resistance combined with the decline in the discovery of novel antibiotics represents a major challenge for infectious disease control that can only be mitigated by investments into novel treatment strategies. Alternative antimicrobials, including silver, have regained interest due to their diverse mechanisms of inhibiting microbial growth. One such example is AGXX®, a broad-spectrum silver containing antimicrobial that produces highly cytotoxic reactive oxygen species (ROS) to inflict extensive macromolecular damage. Due to connections identified between ROS production and antibiotic lethality, we hypothesized that AGXX® could potentially increase the activity of conventional antibiotics. Using the gram-negative pathogenPseudomonas aeruginosa, we screened possible synergistic effects of AGXX® on several antibiotic classes. We found that the combination of AGXX® and aminoglycosides tested at sublethal concentrations led to a rapid exponential decrease in bacterial survival and restored sensitivity of a kanamycin-resistant strain. ROS production contributes significantly to the bactericidal effects of AGXX®/aminoglycoside treatments, which is dependent on oxygen availability and can be reduced by the addition of ROS scavengers. Additionally,P. aeruginosastrains deficient in ROS detoxifying/repair genes were more susceptible to AGXX®/aminoglycoside treatment. We further demonstrate that this synergistic interaction was associated with significant increase in outer and inner membrane permeability, resulting in increased antibiotic influx. Our study also revealed that AGXX®/aminoglycoside-mediated killing requires an active proton motive force across the bacterial membrane. Overall, our findings provide an understanding of cellular targets that could be inhibited to increase the activity of conventional antimicrobials.IMPORTANCEThe emergence of drug-resistant bacteria coupled with the decline in antibiotic development highlights the need for novel alternatives. Thus, new strategies aimed at repurposing conventional antibiotics have gained significant interest. The necessity of these interventions is evident especially in gram-negative pathogens as they are particularly difficult to treat due to their outer membrane. This study highlights the effectiveness of the silver containing antimicrobial AGXX® in potentiating aminoglycoside activities againstP. aeruginosa. The combination of AGXX® and aminoglycosides not only reduces bacterial survival rapidly but also significantly re-sensitizes aminoglycoside-resistantP. aeruginosastrains. In combination with gentamicin, AGXX® induces increased endogenous oxidative stress, membrane damage and iron sulfur cluster disruption. These findings emphasize AGXX®’s potential as a route of antibiotic adjuvant development and shed light into potential targets to enhance aminoglycoside activity.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献