Inferring interactions from microbiome data

Author:

Zapién-Campos RománORCID,Bansept FlorenceORCID,Traulsen ArneORCID

Abstract

AbstractParameter inference of high-dimensional data is challenging and microbiome time series data is no exception. Methods aimed at predicting from point estimates exist, but often even fail to recover the true parameters from simulated data. Computational methods to robustly infer and quantify the uncertainty in model parameters are needed. Here, we propose a computational workflow addressing such challenges – allowing us to compare mechanistic models and identify the values and the certainty of inferred parameters. This approach allows us to infer which kind of interactions occur in the microbial community. In contrast to point-estimate inference, the distribution for the parameters, our outcome, reflects their uncertainty. To achieve this, we consider as many equations for the statistical moments of the microbiome as parameters. Our inference workflow, which builds upon a mechanistic foundation of microscopic processes, can take into account that commonly metagenomic datasets only provide information on relative abundances and hosts’ ensembles. With our framework, we move from qualitative prediction to quantifying the likelihood of certain interaction types in microbiomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3