Comparison of the classification of HER2 from whole-slide images between pathologists and a deep learning model

Author:

Tsuneki MasayukiORCID,Abe Makoto,Kanavati Fahdi

Abstract

AbstractHER2 (human epidermal growth factor receptor 2) is a protein that is found on the surface of some cells, including breast cells. HER2 plays a role in cell growth, division, and repair, and when it is overexpressed, it can contribute to the development of certain types of cancer, particularly breast cancer. HER2 overexpression occurs in approximately 20% of cases, and it is associated with more aggressive tumor phenotypes and poorer prognosis. This makes its status an important factor in determining treatment options for breast cancer. While HER2 expression is typically diagnosed through a combination of immunohistochemistry (IHC) and/or fluorescence in situ hybridization (FISH) testing on breast cancer tissue samples, we sought to determine to what extent it is possible to diagnose from H&E-stained specimens. To this effect we trained a deep learning model to classify HER2-positive image patches using a dataset of 10 whole-slide images (5 HER2-positive, 5 HER2-negative). We evaluated the model on a different test set consisting of patches extracted from 10 WSIs (5 HER2-positive, 5 HER2-negative), and we compared the performance against two pathologists on 100 512×512 patches (50 HER2-positive, 50 HER2-negative). Overall, the model achieved an accuracy of 73% while the pathologists achieved 58% and 47%, respectively.

Publisher

Cold Spring Harbor Laboratory

Reference10 articles.

1. Basic science of her-2/neu: a review;In Seminars in oncology,1999

2. The Expression of EGFR Family Ligands in Breast Carcinomas

3. Testing for HER2 in breast cancer

4. Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical on-cology/college of american pathologists clinical practice guideline focused update;Archives of pathology & laboratory medicine,2018

5. A deep learning model for gastric diffuse-type adenocarcinoma classification in whole slide images;arXiv preprint,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3