E2EGraph: An End-to-end Graph Learning Model for Interpretable Prediction of Pathlogical Stages in Prostate Cancer

Author:

Zhan Wenkang,Song Chen,Das Supratim,Rebbeck Timothy R.,Shi Xinghua

Abstract

AbstractProstate cancer is one of the deadliest cancers worldwide. An accurate prediction of pathological stages using the expressions and interactions of genes is effective for clinical assessment and treatment. However, identification of interactions using biological procedure is time consuming and prohibitively expensive. A graph is a powerful representation for the complex interactome of genes, their transcripts, and proteins. Recently, Graph Neural Networks (GNNs) have gained great attention in machine learning due to their capability to capture the graphical interactions among data entities. To leverage GNNs for predicting pathological stage stages, we developed an end-to-end graph representation and learning model, namely E2EGraph, which can automatically generate a graph representation using gene expression data and a multi-head graph attention network to learn the strength of interactions among genes and make the prediction. To ensure the reliability of model prediction, we identify critical components of graph representation and GNN model to interpret prediction results from multiple perspectives at gene and patient levels. We evaluated E2EGraph to predict pathological stages of prostate cancer using The Cancer Genome Atlas (TCGA) data. Our experimental results demonstrate that E2EGraph reaches the state-of-art prediction performance while being effective in identifying marker genes indicated by interpretability. Our results point to a direction where adaptive graph construction and attention based GNNs can be leveraged for various prediction tasks and interpretation of model prediction in a variety of data domains including disease prediction.

Publisher

Cold Spring Harbor Laboratory

Reference48 articles.

1. “The cancer genome atlas (tcga): https://www.cancer.gov/tcga.”

2. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring

3. Multiparametric decision support system for the prediction of oral cancer reoccurrence;IEEE Transactions on Information Technology in Biomedicine,2011

4. Improved breast cancer prognosis through the combination of clinical and genetic markers

5. Mojo Hand, a TALEN design tool for genome editing applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3