Microbiome Preterm Birth DREAM Challenge: Crowdsourcing Machine Learning Approaches to Advance Preterm Birth Research

Author:

Golob Jonathan L.ORCID,Oskotsky Tomiko T.,Tang Alice S.,Roldan Alennie,Chung Verena,Ha Connie W.Y.,Wong Ronald J.,Flynn Kaitlin J.,Parraga-Leo Antonio,Wibrand Camilla,Minot Samuel S.,Andreoletti Gaia,Kosti Idit,Bletz Julie,Nelson Amber,Gao Jifan,Wei Zhoujingpeng,Chen Guanhua,Tang Zheng-Zheng,Novielli Pierfrancesco,Romano Donato,Pantaleo Ester,Amoroso Nicola,Monaco Alfonso,Vacca Mirco,De Angelis Maria,Bellotti Roberto,Tangaro Sabina,Kuntzleman Abigail,Bigcraft Isaac,Techtmann Stephen,Bae Daehun,Kim Eunyoung,Jeon Jongbum,Joe Soobok,Theis Kevin R.,Ng Sherrianne,Lee Li Yun S.,Diaz-Gimeno Patricia,Bennett Phillip R.,MacIntyre David A.,Stolovitzky Gustavo,Lynch Susan V.,Albrecht Jake,Gomez-Lopez Nardhy,Romero Roberto,Stevenson David K.,Aghaeepour Nima,Tarca Adi L.,Costello James C.,Sirota Marina,

Abstract

AbstractGlobally, every year about 11% of infants are born preterm, defined as a birth prior to 37 weeks of gestation, with significant and lingering health consequences. Multiple studies have related the vaginal microbiome to preterm birth. We present a crowdsourcing approach to predict: (a) preterm or (b) early preterm birth from 9 publicly available vaginal microbiome studies representing 3,578 samples from 1,268 pregnant individuals, aggregated from raw sequences via an open-source tool, MaLiAmPi. We validated the crowdsourced models on novel datasets representing 331 samples from 148 pregnant individuals. From 318 DREAM challenge participants we received 148 and 121 submissions for our two separate prediction sub-challenges with top-ranking submissions achieving bootstrapped AUROC scores of 0.69 and 0.87, respectively. Alpha diversity, VALENCIA community state types, and composition (via phylotype relative abundance) were important features in the top performing models, most of which were tree based methods. This work serves as the foundation for subsequent efforts to translate predictive tests into clinical practice, and to better understand and prevent preterm birth.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3