Abstract
ABSTRACTHigh-grade gliomas are aggressive primary brain cancers with poor response to standard regimens, driven by immense heterogeneity. In isocitrate dehydrogenase (IDH) wild-type high-grade glioma (glioblastoma, GBM), increased intra-tumoral heterogeneity is associated with more aggressive disease. Recently, spatial technologies have emerged to dissect this complex heterogeneity within the tumor ecosystem by preserving cellular organizationin situ. Here, we construct a high-resolution molecular landscape of GBM andIDH-mutant high-grade glioma patient samples to investigate the cellular subtypes and spatial communities that compose high-grade glioma using digital spatial profiling and spatial molecular imaging. This uncovered striking diversity of the tumor and immune microenvironment, that is embodied by the heterogeneity of the inferred copy-number alterations in the tumor. Reconstructing the tumor architecture revealed two distinct niches, one composed of tumor cell states that most closely resemble normal glial cells, associated with microglia; and the other niche populated by monocytes and mesenchymal tumor cells. We further reveal that communication between tumor and immune cells is underpinned by tumor-specific ligands, such as TGFβ signaling in astrocyte-like tumor cells. This primary study reveals high levels of intra-tumoral heterogeneity in high-grade gliomas, associated with a diverse immune landscape within spatially localized regions.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献