Long-term climatic stability drives accumulation and maintenance of divergent lineages in a temperate biodiversity hotspot

Author:

Buckley Sean JamesORCID,Brauer Chris J.ORCID,Unmack Peter J.ORCID,Hammer Michael P.ORCID,Adams MarkORCID,Beatty Stephen J.ORCID,Morgan David L.ORCID,Beheregaray Luciano B.ORCID

Abstract

AbstractAimAnthropogenic climate change is forecast to drive regional climate disruption and instability across the globe. This issue is likely to be exacerbated within biodiversity hotspots, both due to the greater potential for species loss but also to the possibility that endemic lineages might not have experienced significant climatic variation in the past, limiting their evolutionary potential to respond to rapid climate change. We assessed the role of climatic stability on the accumulation and persistence of lineages in an obligate freshwater fish group endemic to a biodiversity hotspot.LocationSouthwest Western Australia (SWWA).TaxaWestern pygmy perch (Nannoperca vittata) and little pygmy perch (Nannoperca pygmaea).MethodsWe sampled 33 individuals from nine populations spanning the range of both study taxa to explore their phylogeographic history. Using a combination of genomic (ddRAD-seq) and environmental approaches, we investigated population divergence and phylogenetic relationships, delimited species and estimated changes in species distributions since the Pliocene.ResultsWe identified two deep phylogroups comprising three divergent clusters, which showed no historical connectivity since the Pliocene. We conservatively suggest these represent three isolated species with additional intraspecific structure within one widespread species. All lineages showed long-term patterns of isolation and persistence owing to climatic stability.Main conclusionsOur results highlighted the role of climatic stability in allowing the persistence of isolated lineages in the SWWA. This biodiversity hotspot is under compounding threat from ongoing climate change and habitat modification, which may further threaten previously undetected cryptic diversity across the region.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3