Live-cell imaging uncovers the relationship between histone acetylation, transcription initiation, and nucleosome mobility

Author:

Saxton Matthew N.ORCID,Morisaki TatsuyaORCID,Krapf DiegoORCID,Kimura HiroshiORCID,Stasevich Timothy J.ORCID

Abstract

AbstractPost-translational protein modifications play an important role in the regulation of gene dynamics. Certain modifications, such as histone acetylation and RNA polymerase II phosphorylation, are associated with transcriptionally active chromatin. However, the spatial and temporal relationship between chromatin and post-translational protein modifications, and how these dynamics facilitate selective gene expression, remain poorly understood. In this study, we address this problem by developing a general methodology for quantifying in live cells the dynamics of chromatin across multiple time and length scales in the context of residue-specific protein modifications. By combining Fab-based labeling of endogenous protein modifications with single-molecule imaging, we track the dynamics of chromatin enriched with histone H3 Lysine-27 acetylation (H3K27ac) and RNA polymerase II Serine-5 phosphorylation (RNAP2-Ser5ph). Our analysis reveals chromatin enriched with H3K27ac is separated from chromatin enriched with RNAP2-Ser5ph. Furthermore, in these separated sites, we show the presence of the two modifications are inversely correlated with one another on the minutes timescale. We then track single nucleosomes in both types of sites on the sub-second timescale and again find evidence for distinct and opposing changes in their diffusive behavior. While nucleosomes diffuse ∼15% faster in chromatin enriched with H3K27ac, they diffuse ∼15% slower in chromatin enriched with RNAP2-Ser5ph. Taken together, these results argue that high levels of H3K27ac and RNAP2-Ser5ph are not often present together at the same place and time, but rather each modification marks distinct sites that are transcriptionally poised or active, respectively.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3