DNA nanopores as artificial membrane channels for origami-based bioelectronics

Author:

Luo Le,Manda Swathi,Park Yunjeong,Demir Busra,Vicente Jesse,Anantram M.P.,Oren Ersin Emre,Gopinath Ashwin,Rolandi Marco

Abstract

SummaryBiological membrane channels mediate information exchange between cells and facilitate molecular recognition1-4. While tuning the shape and function of membrane channels for precision molecular sensing via de-novo routes is complex, an even more significant challenge is interfacing membrane channels with electronic devices for signal readout5-8. This challenge at the biotic-abiotic interface results in low efficiency of information transfer - one of the major barriers to the continued development of high-performance bioelectronic devices9. To this end, we integrate membrane spanning DNA nanopores with bioprotonic contacts to create programmable, modular, and efficient artificial ion-channel interfaces that resolve the ‘iono-electronic’ disparity between the biotic environment and electronics. Through simulations and experiments, we show that cholesterol modified DNA nanopores spontaneously and with remarkable affinity span the lipid bilayer formed over the planar bio-protonic electrode surface and mediate proton transport across the bilayer. Using the ability to easily modify DNA nanostructures, we illustrate that this bioelectronic device can be programmed for electronic recognition of biomolecular signals such as presence of Streptavidin, without disrupting the native environment of the biomolecule. We anticipate this robust biotic-abiotic interface will allow facile electronic measurement of inter-cellular ionic communication and also open the door for active control of cell behavior through externally controlled selective gating of the channels.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3