Abstract
SummaryMetabolic enzymes can adapt during energy stress, but the precise mechanisms and consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, clusters into ring-like structures around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and prevent mitochondrial fission by displacing the dynamin-related protein 1 (Drp1) from mitochondrial constriction sites. Mechanistically, we identified that the lack of ATP and glucose-6-phosphate (G6P) promotes the clustering of HK1. Moreover, we found several mutations that are critical for the formation of HK1-rings. Utilizing these mutations, we could show that HK1-rings keep mitochondria connected and rewire cellular metabolism during energy stress. Our findings highlight that HK1 is a robust energy stress sensor that regulates the shape, connectivity and metabolic activity of mitochondria. Thus, the formation of HK1-rings may affect mitochondrial function in energy stress-related pathologies.
Publisher
Cold Spring Harbor Laboratory