Multi-omics analysis reveals drivers of loss of β-cell function after newly diagnosed autoimmune type 1 diabetes: An INNODIAmulticenter study

Author:

Armenteros Jose Juan Almagro,Brorsson CarolineORCID,Johansen Christian HolmORCID,Banasik Karina,Mazzoni Gianluca,Moulder RobertORCID,Hirvonen KaroliinaORCID,Suomi TomiORCID,Rasool Omid,Bruggraber Sylvaine FA,Marcovecchio M Loredana,Hendricks EmileORCID,Al-Sari Naba,Mattila Ismo,Legido-Quigley Cristina,Suvitaival TommiORCID,Chmura Piotr J,Knip MikaelORCID,Schulte Anke M,Lee Jeong Heon,Sebastiani Guido,Grieco Giuseppina Emanuela,Elo Laura L,Kaur Simranjeet,Pociot Flemming,Dotta Francesco,Tree TimORCID,Lahesmaa RiittaORCID,Overbergh Lut,Mathieu Chantal,Peakman Mark,Brunak SørenORCID

Abstract

AbstractBackgroundHeterogeneity in the rate of β-cell loss in newly diagnosed type 1 diabetes patients is poorly understood and creates a barrier to designing and interpreting disease-modifying clinical trials. Integrative analyses of complementary multi-omics data obtained after the diagnosis of T1D may provide mechanistic insight into the diverse rates of disease progression.MethodsWe collected samples in a pan-European consortium that enabled the concerted analysis of five different omics modalities in data from 97 newly diagnosed patients. In this study we used Multi-Omics Factor Analysis to identify molecular signatures correlating with post-diagnosis decline in β-cell mass measured as fasting C-peptide.ResultsTwo molecular signatures were significantly correlated with fasting C-peptide levels. One signature showed a correlation to neutrophil degranulation, cytokine signaling, lymphoid and non-lymphoid cell interactions and G-protein coupled receptor signaling events that were inversely associated with rapid decline in β-cell function. The second signature was related to translation and viral infection were inversely associated with change in β-cell function. In addition, the immunomics data revealed a Natural Killer cell signature associated with rapid β-cell decline.ConclusionFeatures that differ between individuals with slow and rapid decline in β-cell mass could be valuable in staging and prediction of the rate of disease progression and thus enable smarter (shorter and smaller) trial designs for disease modifying therapies, as well as offering biomarkers of therapeutic effect.FundingThis work is funded by the Innovative Medicine Initiative 2 Joint Undertaking (IMI2 JU) under grant agreement N° 115797 (INNODIA) and N° 945268 (INNODIA HARVEST). This Joint Undertaking receives support from the Union’s Horizon 2020 research and innovation program and ‘EFPIA’, ‘JDRF’ and ‘The Leona M. and Harry B. Helmsley Charitable Trust’.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3