Unravelling individual rhythmic abilities using machine learning

Author:

Bella Simone Dalla,Janaqi Stefan,Benoit Charles-Etienne,Farrugia Nicolas,Bégel Valentin,Verga Laura,Harding Eleanor E.,Kotz Sonja A.

Abstract

AbstractHumans can easily extract the rhythm of a complex sound, like music, and move to its regular beat, for example in dance. These abilities are modulated by musical training and vary significantly in untrained individuals. The causes of this variability are multidimensional and typically hard to grasp with single tasks. To date we lack a comprehensive model capturing the rhythmic fingerprints of both musicians and non-musicians. Here we harnessed machine learning to extract a parsimonious model of rhythmic abilities, based on the behavioral testing (with perceptual and motor tasks) of individuals with and without formal musical training (n= 79). We demonstrate that the variability of rhythmic abilities, and their link with formal and informal music experience, can be successfully captured by profiles including a minimal set of behavioral measures. These profiles can shed light on individual variability in healthy and clinical populations, and provide guidelines for personalizing rhythm-based interventions.

Publisher

Cold Spring Harbor Laboratory

Reference111 articles.

1. Contrastive machine learning reveals the structure of neuroanatomical variation within autism;Science,2022

2. Music, Computing, and Health: A Roadmap for the Current and Future Roles of Music Technology for Health Care and Well-Being;. Music & Science,2021

3. Temporal Control of Movements in Sensorimotor Synchronization

4. The role of musical training in emergent and event-based timing;Frontiers in Human Neuroscience,2013

5. Rhythm synchronization performance and auditory working memory in early- and late-trained musicians

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3