Hierarchy and networks in the transcriptional response ofMycobacterium abscessusto antibiotics

Author:

Hurst-Hess Kelley,McManaman Charity,Yang Yong,Gupta Shamba,Ghosh PallaviORCID

Abstract

AbstractMycobacterium abscessuscauses acute and chronic pulmonary infection in patients with chronic lung damage. It is intrinsically resistance to antibiotics effective against other pathogenic mycobacteria largely due to the drug-induced expression of genes that confer resistance. Induction of genes upon exposure to ribosome targeting antibiotics proceeds via WhiB7-dependent and -independent pathways. WhiB7 controls the expression of >100 genes, a few of which are known determinants of drug resistance. The function of the vast majority of genes within the regulon is unknown, but some conceivably encode additional mechanisms of resistance. Furthermore, the hierarchy of gene expression within the regulon, if any, is poorly understood. In the present work we have identified 56 WhiB7 binding sites using chromatin immunoprecipitation sequencing (CHIP-Seq) which accounts for the WhiB7-dependent upregulation of 70 genes, and find thatM. abscessusWhiB7 functions exclusively as a transcriptional activator at promoters recognized by σABWe have investigated the role of 18 WhiB7 regulated genes in drug resistance and demonstrated the role of MAB_1409c and MAB_4324c in aminoglycoside resistance. Further, we identify a σH-dependent pathway in aminoglycoside and tigecycline resistance which is induced upon drug exposure and is further activated by WhiB7 demonstrating the existence of a crosstalk between components of the WhiB7-dependent and -independent circuits.Abstract ImportanceThe induction of multiple genes that confer resistance to structurally diverse ribosome-targeting antibiotics is funneled through the induction of a single transcriptional activator, WhiB7, by antibiotic-stalled ribosomes. This poses a severe restriction inM. abscessustherapy as treatment with one ribosome-targeting antibiotic confers resistance to all other ribosome-targeting antibiotics. Here we uncover the intricacies of the WhiB7 regulatory circuit, identify three previously unknown determinants of aminoglycoside resistance and unveil a communication between WhiB7 dependent and independent components. This not only expands our understanding of the antibiotic resistance potential ofM. abscessusbut can also inform the development of much needed therapeutic options.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3