How have mathematical models contributed to understanding the transmission and control of SARS-CoV-2 in healthcare settings? A systematic search and review

Author:

Smith David R M,Chervet Sophie,Pinettes Théo,Shirreff George,Jijón SofíaORCID,Oodally Ajmal,Jean KévinORCID,Opatowski Lulla,Kernéis Solen,Temime Laura

Abstract

AbstractBackgroundSince the onset of the COVID-19 pandemic, mathematical models have been widely used to inform public health recommendations regarding COVID-19 control in healthcare settings.ObjectivesTo systematically review SARS-CoV-2 transmission models in healthcare settings, and summarise their contributions to understanding nosocomial COVID-19.MethodsSystematic search and review.Data sourcesPublished articles indexed in PubMed.Study eligibility criteriaModelling studies describing dynamic inter-individual transmission of SARS-CoV-2 in healthcare settings, published by mid-February 2022.Participants and interventionsAny population and intervention described by included models.Assessment of risk of biasNot appropriate for modelling studies.Methods of data synthesisStructured narrative review.ResultsModels have mostly focused on acute care and long-term care facilities in high-income countries. Models have quantified outbreak risk across different types of individuals and facilities, showing great variation across settings and pandemic periods. Regarding surveillance, routine testing – rather than symptom-based testing – was highlighted as essential for COVID-19 prevention due to high rates of silent transmission. Surveillance impacts were found to depend critically on testing frequency, diagnostic sensitivity, and turn-around time. Healthcare re-organization was also found to have large epidemiological impacts: beyond obvious benefits of isolating cases and limiting inter-individual contact, more complex strategies such as staggered staff scheduling and immune-based cohorting reduced infection risk. Finally, vaccination impact, while highly effective for limiting COVID-19 burden, varied substantially depending on assumed mechanistic impacts on infection acquisition, symptom onset and transmission. Studies were inconsistent regarding which individuals to prioritize for interventions, probably due to the high diversity of settings and populations investigated.ConclusionsModelling results form an extensive evidence base that may inform control strategies for future waves of SARS-CoV-2 and other viral respiratory pathogens. We propose new avenues for future models of healthcare-associated outbreaks, with the aim of enhancing their efficiency and contributions to decision-making.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3