Author:
Tanzo Julia T.,Li Veronica L.,Wiggenhorn Amanda L.,Moya-Garzon Maria Dolores,Wei Wei,Lyu Xuchao,Dong Wentao,Tahir Usman A.,Chen Zsu-Zsu,Cruz Daniel E.,Deng Shuliang,Shi Xu,Zheng Shuning,Guo Yan,Sims Mario,Abu-Remaileh Monther,Wilson James G.,Gerszten Robert E.,Long Jonathan Z.,Benson Mark D.
Abstract
AbstractN-acyl amino acids are a large family of circulating lipid metabolites that modulate energy expenditure and fat mass in rodents. However, little is known about the regulation and potential cardiometabolic functions of N-acyl amino acids in humans. Here, we analyze the cardiometabolic phenotype associations and genetic regulation of four plasma N-fatty acyl amino acids (N-oleoyl-leucine, N-oleoyl-phenylalanine, N-oleoyl-serine, and N-oleoyl-glycine) in 2,351 individuals from the Jackson Heart Study. N-oleoyl-leucine and N-oleoyl-phenylalanine were positively associated with traits related to energy balance, including body mass index, waist circumference, and subcutaneous adipose tissue. In addition, we identify theCYP4F2locus as a human-specific genetic determinant of plasma N-oleoyl-leucine and N-oleoyl-phenylalanine levels. In vitro, CYP4F2-mediated hydroxylation of N-oleoyl-leucine and N-oleoyl-phenylalanine results in metabolic diversification and production of many previously unknown lipid metabolites with varying characteristics of the fatty acid tail group, including several that structurally resemble fatty acid hydroxy fatty acids (FAHFAs). By contrast, FAAH-regulated N-oleoyl-glycine and N-oleoyl-serine were inversely associated with traits related to glucose and lipid homeostasis. These data uncover a human-specific enzymatic node for the metabolism of a subset of N-fatty acyl amino acids and establish a framework for understanding the cardiometabolic roles of individual N-fatty acyl amino acids in humans.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献