Growth defect of domain III glycoprotein B mutants of human cytomegalovirus reverted by compensatory mutations co-localizing in post-fusion conformation

Author:

Madlen Mollik,Lukas Eisler,Büsra Külekci,Elisabeth Puchhammer-StöcklORCID,Irene GörzerORCID

Abstract

AbstractCell entry is a crucial step for a virus to infect a host cell. Human cytomegalovirus (HCMV) utilizes the glycoprotein B (gB) to fuse the viral and host cell membrane upon receptor binding of gH/gL-containing complexes. Fusion is mediated by major conformational changes of gB from a metastable pre-fusion to a stable post-fusion whereby the central trimeric coiled-coils, formed by domain (D) III α helices, remain structurally nearly unchanged. To better understand the role of the stable core, we individually introduced three potentially helix-breaking and one disulfide bond-breaking mutation in the DIII α3 to alter the gB stability, and studied different aspects of the viral behavior upon long-term culturing. Two of the three helix-breaking mutations were lethal for the virus in either fibroblasts or epithelial cells and the third substitution led from mild to severe effects on viral replication and infection efficiency. gB_Y494P and gB_I495P suggest that the pre-fusion conformation was stabilized and the fusion process inhibited, gB_G493P on the other hand displayed a delayed replication increase and spread, more pronounced in epithelial cells, hinting at an impaired fusion. Interestingely, the disulfide bond-breaker mutation, gB_C507S, performed strikingly different in the two cell types – lethal in epithelial cells and an atypical phenotype in fibroblasts, respectively. Replication curve analyses paired with the infection efficiency and the spread morphology suggest a dysregulated fusion process which could be reverted by second-site mutations mapping predominantly to gB DV. This underlines the functional importance of a stable core for a well-regulated DV rearrangement during fusion.ImportanceHuman cytomegalovirus (HCMV) can establish a lifelong infection. In most people, the infection follows an asymptomatic course, however it is a major cause of morbidity and mortality in immunocompromised patients or neonates. HCMV has a very broad cell tropism, ranging from fibroblasts to epi- and endothelial cells. It uses different entry pathways utilizing the core fusion machinery consisting of glycoprotein complexes gH/gL and gB. The fusion protein gB undergoes severe rearrangements from a metastable pre-fusion to a stable post-fusion. Here, we were able to characterize the viral behavior after the introduction of four single point mutations in gBs central core. These led to various cell type-specific atypical phenotypes and the emergence of compensatory mutations, demonstrating an important interaction between domains III and V. We provide a new basis for the delevopment of recombinant stable pre-fusion gB which can further serve as a tool for the drug and vaccine development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3