Abstract
AbstractInflammation skews bone marrow hematopoiesis increasing the production of myeloid effector cells at the expense of steady-state erythropoiesis. A compensatory stress erythropoiesis response is induced to maintain homeostasis until inflammation is resolved. In contrast to steady-state erythroid progenitors, stress erythroid progenitors (SEPs) utilize signals induced by inflammatory stimuli. However, the mechanistic basis for this is not clear. Here we reveal a nitric oxide (NO)-dependent regulatory network underlying two stages of stress erythropoiesis, namely proliferation, and the transition to differentiation. In the proliferative stage, immature SEPs and cells in the niche increased expression of inducible nitric oxide synthase (Nos2oriNOS) to generate NO. Increased NO rewires SEP metabolism to increase anabolic pathways, which drive the biosynthesis of nucleotides, amino acids and other intermediates needed for cell division. This NO-dependent metabolism promotes cell proliferation while also inhibiting erythroid differentiation leading to the amplification of a large population of non-committed progenitors. The transition of these progenitors to differentiation is mediated by the activation of nuclear factor erythroid 2-related factor 2 (Nfe2l2 or Nrf2). Nrf2 acts as an anti-inflammatory regulator that decreases NO production, which removes the NO-dependent erythroid inhibition and allows for differentiation. These data provide a paradigm for how alterations in metabolism allow inflammatory signals to amplify immature progenitors prior to differentiation.Key pointsNitric-oxide (NO) dependent signaling favors an anabolic metabolism that promotes proliferation and inhibits differentiation.Activation of Nfe2l2 (Nrf2) decreases NO production allowing erythroid differentiation.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Role of Nitric Oxide in Megakaryocyte Function;International Journal of Molecular Sciences;2023-05-02