Validation of an open-source smartphone step counting algorithm in clinical and non-clinical settings

Author:

Straczkiewicz MarcinORCID,Keating Nancy L.ORCID,Thompson Embree,Matulonis Ursula A.,Campos Susana M.,Wright Alexi A.ORCID,Onnela Jukka-PekkaORCID

Abstract

AbstractBackgroundStep counts are increasingly used in public health and clinical research to assess wellbeing, lifestyle, and health status. However, estimating step counts using commercial activity trackers has several limitations, including a lack of reproducibility, generalizability, and scalability. Smartphones are a potentially promising alternative, but their step-counting algorithms require robust validation that accounts for temporal sensor body location, individual gait characteristics, and heterogeneous health states.ObjectiveOur goal was to evaluate an open-source step-counting method for smartphones under various measurement conditions against step counts estimated from data collected simultaneously from different body locations (“internal” validation), manually ascertained ground truth (“manual” validation), and step counts from a commercial activity tracker (Fitbit Charge 2) in patients with advanced cancer (“wearable” validation).MethodsWe used eight independent datasets collected in controlled, semi-controlled, and free-living environments with different devices (primarily Android smartphones and wearable accelerometers) carried at typical body locations. Five datasets (N=103) were used for internal validation, two datasets (N=107) for manual validation, and one dataset (N=45) used for wearable validation. In each scenario, step counts were estimated using a previously published step-counting method for smartphones that uses raw sub-second level accelerometer data. We calculated mean bias and limits of agreement (LoA) between step count estimates and validation criteria using Bland-Altman analysis.ResultsIn the internal validation datasets, participants performed 751.7±581.2 (mean±SD) steps, and the mean bias was -7.2 steps (LoA -47.6, 33.3) or -0.5%. In the manual validation datasets, the ground truth step count was 367.4±359.4 steps while the mean bias was -0.4 steps (LoA -75.2, 74.3) or 0.1 %. In the wearable validation dataset, Fitbit devices indicated mean step counts of 1931.2±2338.4, while the calculated bias was equal to -67.1 steps (LoA -603.8, 469.7) or a difference of 0.3 %.ConclusionsThis study demonstrates that our open-source step counting method for smartphone data provides reliable step counts across sensor locations, measurement scenarios, and populations, including healthy adults and patients with cancer.

Publisher

Cold Spring Harbor Laboratory

Reference53 articles.

1. U.S. Department of Health and Human Services. Step It Up! The Surgeon General’s Call to Action to Promote Walking and Walkable Communities [Internet]. Washington, DC; 2015. Available from: www.surgeongeneral.gov

2. Is there evidence that walking groups have health benefits? A systematic review and meta-analysis;Br J Sports Med [Internet],2015

3. Effect of pedometer-based walking interventions on long-term health outcomes: Prospective 4-year follow-up of two randomised controlled trials using routine primary care data;PLoS Med,2019

4. Daily steps and all-cause mortality: a meta-analysis of 15 international cohorts;Lancet Public Heal,2022

5. Protective Effect of Time Spent Walking on Risk of Stroke in Older Men

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3