Rapid and scalable preclinical evaluation of personalized antisense oligonucleotide therapeutics using organoids derived from rare disease patients

Author:

Means John C.,Louiselle Daniel A.,Farrow Emily G.,Pastinen Tomi,Younger Scott T.

Abstract

AbstractPersonalized antisense oligonucleotides (ASOs) have achieved positive results in the treatment of rare genetic disease. As clinical sequencing technologies continue to advance, the ability to identify rare disease patients harboring pathogenic genetic variants amenable to this therapeutic strategy will likely improve. Here, we describe a scalable platform for generating patient-derived cellular models and demonstrate that these personalized models can be used for preclinical evaluation of patient-specific ASOs. We establish robust protocols for delivery of ASOs to patient-derived organoid models and confirm reversal of disease-associated phenotypes in cardiac organoids derived from a Duchenne muscular dystrophy (DMD) patient harboring a structural deletion in the dystrophin gene amenable to treatment with existing ASO therapeutics. Furthermore, we design novel patient-specific ASOs for two additional DMD patients (siblings) harboring a deep intronic variant in the dystrophin gene that gives rise to a novel splice acceptor site, incorporation of a cryptic exon, and premature transcript termination. We show that treatment of patient-derived cardiac organoids with patient-specific ASOs results in restoration of DMD expression and reversal of disease-associated phenotypes. The approach outlined here provides the foundation for an expedited path towards the design and preclinical evaluation of personalized ASO therapeutics for a broad range of rare diseases.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3