Vertical transmission of African-lineage Zika virus through the fetal membranes in a rhesus Macaque (Macaca mulatta) model

Author:

Koenig Michelle R.ORCID,Mitzey Ann M.,Zeng Xiankun,Reyes Leticia,Simmons Heather A.,Morgan Terry K.,Bohm Ellie K.,Pritchard Julia C.,Schmidt Jenna A.,Ren Emily,Jaimes Fernanda Leyva,Winston Eva,Basu Puja,Weiler Andrea M.,Friedrich Thomas C.ORCID,Aliota Matthew T.,Mohr Emma L.ORCID,Golos Thaddeus G.ORCID

Abstract

AbstractZika virus (ZIKV) can be transmitted vertically from mother to fetus during pregnancy, resulting in a range of outcomes, including severe birth defects and fetal/infant death. Potential pathways of vertical transmissionin uterohave been proposed but remain undefined. Identifying the timing and routes of vertical transmission of ZIKV may help us identify when interventions would be most effective. Furthermore, understanding what barriers ZIKV overcomes to effect vertical transmission may help improve models for evaluating infection by other pathogens during pregnancy. To determine the pathways of vertical transmission, we inoculated 12 pregnant rhesus macaques with an African-lineage ZIKV at gestational day 30 (term is 165 days). Eight pregnancies were surgically terminated at either seven or 14 days post-maternal infection. Maternal-fetal interface and fetal tissues and fluids were collected and evaluated with RT-qPCR,in situhybridization for ZIKV RNA, immunohistochemistry, and plaque assays. Four additional pregnant macaques were inoculated and terminally perfused with 4% paraformaldehyde at three, six, nine, or ten days post-maternal inoculation. For these four cases, the entire fixed pregnant uterus was evaluated within situhybridization for ZIKV RNA. We determined that ZIKV can reach the MFI by six days post-infection and infect the fetus by ten days. Infection of the chorionic membrane and the extraembryonic coelomic fluid preceded infection of the fetus and the mesenchymal tissue of the placental villi. We did not find evidence to support a transplacental route of ZIKV vertical transmission via infection of syncytiotrophoblasts or villous cytotrophoblasts. The pattern of infection observed in the maternal-fetal interface provides evidence of vertical ZIKV transmission through the fetal membranes.Author’s SummaryZika virus (ZIKV) can be vertically transmitted from mother to fetus during pregnancy resulting in adverse pregnancy outcomes. For vertical transmission to occur, ZIKV must overcome the barriers of the maternal-fetal interface, yet the exact pathway ZIKV takes remains undefined. The maternal-fetal interface consists of the maternal decidua, the placenta, and the fetal membranes. ZIKV could reach the fetus through the placenta if it can infect the layer of cells that are directly exposed to maternal blood. ZIKV could also reach the fetus by infecting the decidua and then the adjacent fetal membranes. To determine the pathways of ZIKV vertical transmission, we infected pregnant macaques and evaluated ZIKV burden in the maternal-fetal interface and fetus shortly after maternal infection. The pattern of infection observed suggests that ZIKV vertically transmits through the fetal membranes, not the placenta. This finding is significant because it challenges the assumption that vertical transmission occurs exclusively across the placenta. By including the fetal membranes in our models of vertical transmission, we can more accurately determine which pathogens can be vertically transmitted. Ultimately, this study demonstrates that fetal membranes are an essential barrier to pathogens that warrant further investigation.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Zika virus infection histories in brain development;Disease Models & Mechanisms;2023-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3