Distilling identifiable and interpretable dynamic models from biological data

Author:

Massonis Gemma,Villaverde Alejandro F.,Banga Julio R.ORCID

Abstract

AbstractMechanistic dynamical models allow us to study the behavior of complex biological systems. They can provide an objective and quantitative understanding that would be difficult to achieve through other means. However, the systematic development of these models is a non-trivial exercise and an open problem in computational biology. Currently, many research efforts are focused on model discovery, i.e. automating the development of interpretable models from data. One of the main frameworks is sparse regression, where the sparse identification of nonlinear dynamics (SINDy) algorithm and its variants have enjoyed great success. SINDy-PI is an extension which allows the discovery of rational nonlinear terms, thus enabling the identification of kinetic functions common in biochemical networks, such as Michaelis-Menten. SINDy-PI also pays special attention to the recovery of parsimonious models (Occam’s razor). Here we focus on biological models composed of sets of deterministic nonlinear ordinary differential equations. We present a methodology that, combined with SINDy-PI, allows the automatic discovery of structurally identifiable and observable models which are also mechanistically interpretable. The lack of structural identifiability and observability makes it impossible to uniquely infer parameter and state variables, which can compromise the usefulness of a model by distorting its mechanistic significance and hampering its ability to produce biological insights. We illustrate the performance of our method with six case studies. We find that, despite enforcing sparsity, SINDy-PI sometimes yields models that are unidentifiable. In these cases we show how our method transforms their equations in order to obtain a structurally identifiable and observable model which is also interpretable.Author summaryDynamical models provide a quantitative understanding of complex biological systems. Since their development is far from trivial, in recent years many research efforts focus on obtaining these models automatically from data. One of the most effective approaches is based on implicit sparse regression. This technique is able to infer biochemical networks with kinetic functions containing rational nonlinear terms. However, as we show here, one limitation is that it may yield models that are unidentifiable. These features may lead to inaccurate mechanistic interpretations and wrong biological insights. To overcome this limitation, we propose an integrated methodology that applies additional procedures in order to ensure that the discovered models are structurally identifiable, observable, and interpretable. We demonstrate our method with six challenging case studies of increasing model complexity.

Publisher

Cold Spring Harbor Laboratory

Reference64 articles.

1. DiStefano JJ. Dynamic Systems Biology Modeling and Simulation. Academic Press; 2015.

2. Ingalls BP. Mathematical Modeling in Systems Biology: An Introduction. MIT Press; 2022.

3. Strogatz SH. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. Westview Press; 2014.

4. Open problems in mathematical biology;Math Biosci,2022

5. Data-Driven Discovery of Physical Laws;Cognitive Science,1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3