Campus Sewage Water Surveillance based dynamics and infection trends of SARS-CoV-2 variants during third wave of COVID-19 in Pune, India

Author:

Malik Vinita,Rajput Vinay,Pramanik Rinka,Samson Rachel,Yadav Rakesh kumar,Kadam Pradnya,Shah Nikita,Sawant Rutuja,Bhalerao Unnati,Tupekar Manisha,Khan SoumenORCID,Shah Priyanki,Shashidhara LSORCID,Kamble Sanjay,Dastager SyedORCID,Karmodiya KrishanpalORCID,Dharne MaheshORCID

Abstract

AbstractThe wastewater-based epidemiology (WBE) of SARS-CoV-2 is a quick and cost-effective method of tracking virus transmission. However, few studies reported on campus or in academic or residential settings worldwide. In this study, we demonstrated the WBE approach to detect, monitor, and evaluate genomic variants of SARS-CoV-2 fragments in a sewage treatment plant (STP) located on the campus of CSIR National Chemical Laboratory, Pune, India. Herein we describe the early warning capability of WBE, with viral load rise in campus sewage water up to 14 days before its clinical detection. This was supported further by a significant correlation between SARS-CoV-2 RNA concentration and clinically reported COVID-19 cases on campus. Additionally, we comprehended the probable targets missed by the quantitative qRT-PCR using amplicon-based sequencing due to low viral load. The analysis revealed the presence of signature mutations of the Omicron (S:N679K, S:N764K, S:D796Y, N:P13L, ORF1a:T3255I, ORF1a:K856R, ORF1a:P3395H, and N:S413R) before the lineage was first detected globally. Further, we used Lineage decomposition (LCS) tool to detect the Variant of Concern (VOC)/Variant of Interest (VOI) signals upto a month earlier in sewage water samples. The analysis also indicated the transition of lineage from Delta to Omicron in late Decemeber,2021. This is the first study in India highlighting the use of on-campus STP to evaluate the local spread of SARS-CoV-2, which could aid in preventing COVID-19 in academic institutes/universities. This study proves the usefulness of WBE as an early warning system for detecting, tracking and tracing VOCs using the sequencing approach. The current study could aid in taking critical decisions to tackle the pandemic scenario on campus.HighlightsThe first study on campus sewage water for SARS-CoV-2 surveillance in IndiaEarly detection of Omicron VOC signals during early November 2021Sequencing revealed the presence of Omicron VOC fragments prior to clinical cases reported on campusGenomic analysis indicated transition of Delta to Omicron lineage in late December 2021 and potentially led to the third waveCombining qRT-PCR and sequencing could be useful for on-campus tracking of variants using wastewater surveillance

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3