A novel approach for estimating vaccine efficacy for infections with multiple disease outcomes: application to a COVID-19 vaccine trial

Author:

Williams Lucy RORCID,Voysey MerrynORCID,Pollard Andrew J,Grassly Nicholas CORCID

Abstract

AbstractVaccines can provide protection against infection or reduce disease progression and severity. Vaccine efficacy (VE) is typically evaluated independently for different outcomes, but this can cause biased estimates of VE. We propose a new analytical framework based on a model of disease progression for VE estimation for infections with multiple possible outcomes of infection: Joint analysis of multiple outcomes in vaccine efficacy trials (JAMOVET). JAMOVET is a Bayesian hierarchical regression model that controls for biases and can evaluate covariates for VE, the risk of infection, and the probability of progression. We applied JAMOVET to simulated data, and data from COV002 (NCT04400838), a phase 2/3 trial of ChAdOx1 nCoV-19 (AZD1222) vaccine. Simulations showed that biases are corrected by explicitly modelling disease progression and imperfect test characteristics. JAMOVET estimated ChAdOx1 nCoV-19 VE against infection (VEin) at 47% (95% CI 36-56) and progression to symptoms (VEpr) at 48% (95% CI 32-61). This implies a VE against symptomatic infection of 72% (95% CI 63-80), consistent with published trial estimates.VEindecreased with age whileVEprincreased with age. JAMOVET is a powerful tool for evaluating diseases with multiple dependent outcomes and can be used to adjust for biases and identify predictors of key outcomes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3