Abstract
AbstractCRISPR-associated transposons (CASTs) co-opt CRISPR-Cas proteins and Tn7-family transposons for RNA-guided vertical and horizontal transmission. CASTs encode minimal CRISPR arrays but can’t acquire new spacers. Here, we show that CASTs instead co-opt defense-associated CRISPR arrays for horizontal transmission. A bioinformatic analysis shows that all CAST sub-types co-occur with defense-associated CRISPR-Cas systems. Using anE. coliquantitative transposition assay, we show that CASTs use CRISPR RNAs (crRNAs) from these defense systems for horizontal gene transfer. A high-resolution structure of the type I-F CAST-Cascade in complex with a type III-B crRNA reveals that Cas6 recognizes direct repeats via sequence-independentπ − πinteractions. In addition to using heterologous CRISPR arrays, type V CASTs can also transpose via a crRNA-independent unguided mechanism, even when the S15 co-factor is over-expressed. Over-expressing S15 and the trans-activating CRISPR RNA (tracrRNA) or a single guide RNA (sgRNA) reduces, but does not abrogate, off-target integration for type V CASTs. Exploiting new spacers in defense-associated CRISPR arrays explains how CASTs horizontally transfer to new hosts. More broadly, this work will guide further efforts to engineer the activity and specificity of CASTs for gene editing applications.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献