Dynamic lid domain ofChloroflexus aurantiacusMalonyl-CoA Reductase controls the reaction

Author:

Kabasakal Burak V.ORCID,Cotton Charles A. R.ORCID,Murray James W.ORCID

Abstract

AbstractMalonyl-Coenzyme A Reductase (MCR) inChloroflexus aurantiacus, a characteristic enzyme of the 3-hydroxypropionate (3-HP) cycle, catalyses the reduction of malonyl-CoA to 3-HP. MCR is a bi-functional enzyme; in the first step, malonyl-CoA is reduced to the free intermediate malonate semialdehyde by the C-terminal region of MCR, and further reduced to 3-HP by the N-terminal region of MCR. Here we present the crystal structures of both N-terminal and C-terminal regions of the split MCR fromC. aurantiacus. A catalytic mechanism is suggested by ligand and substrate bound structures, and structural and kinetic studies of MCR variants. Both MCR structures reveal one catalytic, and one non-catalytic SDR (short chain dehydrogenase/reductase) domain. C-terminal MCR has a lid domain which undergoes a conformational change and controls the reaction. In the proposed mechanism of the C-terminal MCR, the conversion of malonyl-CoA to malonate semialdehyde is based on the reduction of malonyl-CoA by NADPH, followed by the decomposition of the hemithioacetal to produce malonate semialdehyde and coenzyme A. Conserved arginines, Arg734 and Arg773 are proposed to play key roles in the mechanism and conserved Ser719, and Tyr737 are other essential residues forming an oxyanion hole for the substrate intermediates.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3