High Volume Rate 3-D Ultrasound Imaging Using Fast-Tilting and Redirecting Reflectors

Author:

Dong ZhijieORCID,Li ShuangliangORCID,Duan Xiaoyu,Lowerison Matthew R.ORCID,Huang ChengwuORCID,You QiORCID,Chen ShigaoORCID,Zou Jun,Song PengfeiORCID

Abstract

Abstract3-D ultrasound imaging has many advantages over 2-D imaging such as more comprehensive tissue evaluation and less operator dependence. Although many 3-D ultrasound imaging techniques have been developed in the last several decades, a low-cost and accessible solution with high imaging volume rate and imaging quality remains elusive. Recently we proposed a new, high volume rate 3-D ultrasound imaging technique: Fast Acoustic Steering via Tilting Electromechanical Reflectors (FASTER), which uses a water-immersible and fast-tilting acoustic reflector to steer ultrafast plane waves in the elevational direction to achieve high volume rate 3-D ultrasound imaging with conventional 1-D array transducers. However, the initial implementation of FASTER imaging only involves a single fast-tilting acoustic reflector, which is inconvenient to use because the probe cannot be held in the regular upright position. Also, conventional FASTER imaging can only be performed inside a water tank because of the necessity of using water for acoustic conduction. To address these limitations of conventional FASTER, here we developed a novel ultrasound probe clip-on device that encloses a fast-tilting reflector, a redirecting reflector, and an acoustic wave conduction medium. The new FASTER 3-D imaging device can be easily attached to or removed from clinical ultrasound transducers, allowing rapid transformation from 2-D to 3-D ultrasound imaging.In vitroB-mode imaging studies demonstrated that the proposed method provided comparable imaging quality (e.g., spatial resolution and contrast-to-noise ratio) to conventional, mechanical-translation-based 3-D imaging while providing a much faster 3-D volume rate (e.g., 300 Hz vs ∼10 Hz). In addition to B-mode imaging, we also demonstrated 3-D power Doppler imaging and 3-D super-resolution ultrasound localization microscopy with the newly developed FASTER device. Anin vivoimaging study showed that the FASTER device could clearly visualize the 3-D anatomy of the basilic vein of a healthy volunteer, and customized beamforming was implemented to accommodate the speed of sound difference between the acoustic medium and the imaging object (e.g., soft tissue). These results suggest that the newly developed redirecting reflector and the clip-on device could overcome key hurdles for future clinical translation of the FASTER 3-D imaging technology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3