Tetravalent SARS-CoV-2 S1 Subunit Protein Vaccination Elicits Robust Humoral and Cellular Immune Responses in SIV-Infected Rhesus Macaque Controllers

Author:

Khan Muhammad S.ORCID,Kim EunORCID,Hingrat Quentin Le,Kleinman Adam,Ferrari Alessandro,Sammartino Jose C,Percivalle Elena,Xu Cuiling,Huang Shaohua,Kenniston Thomas W.,Cassaniti Irene,Baldanti Fausto,Pandrea Ivona,Gambotto Andrea,Apetrei Cristian

Abstract

AbstractThe COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.

Publisher

Cold Spring Harbor Laboratory

Reference82 articles.

1. WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int.

2. Overview of Vaccines and Vaccination

3. International COVID-19 vaccine inequality amid the pandemic: Perpetuating a global crisis?;J. Glob. Health,2021

4. WHO – COVID19 Vaccine Tracker. https://covid19.trackvaccines.org/agency/who/.

5. SARS-CoV-2 Variants and Vaccines;N. Engl. J. Med,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3