BOLD Moments: modeling short visual events through a video fMRI dataset and metadata
Author:
Lahner BenjaminORCID, Dwivedi Kshitij, Iamshchinina Polina, Graumann MonikaORCID, Lascelles Alex, Roig GemmaORCID, Gifford Alessandro Thomas, Pan Bowen, Jin SouYoung, Ratan Murty N. ApurvaORCID, Kay Kendrick, Oliva Aude, Cichy Radoslaw
Abstract
SummaryGrasping the meaning of everyday visual events is a fundamental feat of human intelligence that hinges on diverse neural processes ranging from vision to higher-level cognition. Deciphering the neural basis of visual event understanding requires rich, extensive, and appropriately designed experimental data. However, this type of data is hitherto missing. To fill this gap, we introduce the BOLD Moments Dataset (BMD), a large dataset of whole-brain fMRI responses to over 1,000 short (3s) naturalistic video clips and accompanying metadata. We show visual events interface with an array of processes, extending even to memory, and we reveal a match in hierarchical processing between brains and video-computable deep neural networks. Furthermore, we showcase that BMD successfully captures temporal dynamics of visual events at second resolution. BMD thus establishes a critical groundwork for investigations of the neural basis of visual event understanding.
Publisher
Cold Spring Harbor Laboratory
Reference157 articles.
1. Abraham, A. , Pedregosa, F. , Eickenberg, M. , Gervais, P. , Mueller, A. , Kossaifi, J. , Gramfort, A. , Thirion, B. , & Varoquaux, G . (2014). Machine learning for neuroimaging with scikit-learn. Frontiers in Neuroinformatics, 8. https://www.frontiersin.org/articles/10.3389/fninf.2014.00014 2. Aliko, S. , Huang, J. , Gheorghiu, F. , Meliss, S. , & Skipper, J. I . (2020). A naturalistic neuroimaging database for understanding the brain using ecological stimuli. Scientific Data, 7(1), Article 1. https://doi.org/10.1038/s41597-020-00680-2 3. Allen, E. J. , St-Yves, G. , Wu, Y. , Breedlove, J. L. , Prince, J. S. , Dowdle, L. T. , Nau, M. , Caron, B. , Pestilli, F. , Charest, I. , Hutchinson, J. B. , Naselaris, T. , & Kay, K . (2022). A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence. Nature Neuroscience, 25(1), Article 1. https://doi.org/10.1038/s41593-021-00962-x 4. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain 5. Working Memory
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|