Intermediate antiparallel fibrils in Aβ40 Dutch mutant aggregation: nanoscale insights from AFM-IR

Author:

Banerjee SiddharthaORCID,Naik Tanmayee,Ghosh Ayanjeet

Abstract

AbstractCerebral Amyloid Angiopathy (CAA), which involves amyloid deposition in blood vessels leading to fatal cerebral hemorrhage and recurring strokes, is present in the majority Alzheimer’s disease cases. Familial mutations in the amyloid β peptide is correlated to higher risks of CAA, and are mostly comprised of mutations at residues 22 and 23. While the structure of the wild type Aβ peptide has been investigated in great detail, less is known about the structure of mutants involved in CAA and evolutions thereof. This is particularly true for mutations at residue 22, for which detailed molecular structures, as typically determined from Nuclear Magnetic Resonance (NMR) spectroscopy or electron microscopy, do not exist. In this report, we have used nanoscale infrared (IR) spectroscopy augmented with Atomic Force Microscopy (AFM-IR) to investigate structural evolution of the Aβ Dutch mutant (E22Q) at the single aggregate level. We show that that in the oligomeric stage, the structural ensemble is distinctly bimodal, with the two subtypes differing with respect to population of parallel β-sheets. Fibrils on the other hand are structurally homogeneous, with early-stage fibrils distinctly anti parallel in character, which develop parallel β-sheets upon maturation. Furthermore, the antiparallel structure is found to be a persistent feature across different stages of aggregation.

Publisher

Cold Spring Harbor Laboratory

Reference37 articles.

1. Alzheimer’s disease and the amyloid-beta peptide;J Alzheimers Dis,2010

2. The neuropathological diagnosis of Alzheimer’s disease;Molecular Neurodegeneration,2019

3. Neuropathology of Alzheimer’s Disease;Mount Sinai Journal of Medicine: A Journal of Translational and Personalized Medicine,2010

4. Cerebral amyloid angiopathy and Alzheimer disease — one peptide, two pathways;Nature Reviews Neurology,2020

5. Changing perspectives regarding late-life dementia;Nature Reviews Neurology,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3