Spatiotemporal analysis of SARS-CoV-2 infection reveals an expansive wave of monocyte-derived macrophages associated with vascular damage and virus clearance in hamster lungs

Author:

Bagato Ola,Balkema-Buschmann Anne,Todt Daniel,Weber Saskia,Gömer André,Qu Bingqian,Miskey Csaba,Ivics Zoltan,Mettenleiter Thomas C.,Finke StefanORCID,Brown Richard J. P.ORCID,Breithaupt Angele,Ushakov Dmitry S.ORCID

Abstract

AbstractFactors of the innate immune response to SARS-CoV-2 in the lungs are pivotal for the ability of the host to deal with the infection. In humans, excessive macrophage infiltration is associated with disease severity. Using 3D spatiotemporal analysis of optically cleared hamster lung slices in combination with virological, immunohistochemical and RNA sequence analyses, we visualized the spread of SARS-CoV-2 through the lungs and the rapid anti-viral response in infected lung epithelial cells, followed by a wave of monocyte-derived macrophage (MDM) infiltration and virus elimination from the tissue. These SARS-CoV-2 induced innate immune processes are closely related to the onset of necrotizing inflammatory and consecutive remodelling responses in the lungs, which manifests as extensive cell death, vascular damage, thrombosis, and cell proliferation. Here we show that MDM are directly linked to virus clearance, and appear in connection with tissue injury and blood vessel damage. Rapid initiation of prothrombotic factor upregulation, tissue repair and alveolar cell proliferation results in tissue remodelling, which is followed by fibrosis development despite a decrease in inflammatory and anti-viral activities. Thus, although the hamsters are able to resolve the infection following the MDM influx and repair lung tissue integrity, longer-term alterations of the lung tissues arise as a result of concurrent tissue damage and regeneration processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3