Membrane and glycocalyx tethering of DNA nanostructures for enhanced uptake

Author:

Wang WeitaoORCID,Chopra Bhavya,Walawalkar Vismaya,Liang Zijuan,Adams Rebekah,Deserno Markus,Ren Xi,Taylor Rebecca E.ORCID

Abstract

AbstractDNA nanostructures (DNs) have been increasingly utilized in biosensing, drug delivery, diagnostics and therapeutics, because of their programmable assembly, control over size and shape, and ease of functionalization. However, the low cellular uptake of DNs has limited their effectiveness in these biomedical applications. Here we demonstrate the potential of membrane and glycocalyx binding as general strategies to enhance the cellular uptake of DNs. By targeting the plasma membrane and cell-surface glycocalyx, the uptake of all three distinct DNs is significantly enhanced as compared to uptake of bare DNs. We also demonstrate the viability of single-step membrane labeling by cholesterol-DNs as competitive with previous multistep approaches. Further, we show that the endocytic pathway of membrane-bound DNs is an interdependent process that involves scavenger receptors, clathrin-, and caveolinmediated endocytosis. Our findings may potentially expand the toolbox for effective cellular delivery of DNA nanostructured systems.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3