Measuring extracellular human brain pH and amino acid metabolism with hyperpolarized [1-13C]pyruvate

Author:

Khan Alixander SORCID,McLean Mary A,Kaggie Joshua D,Horvat-Menih Ines,Matys Tomasz,Schulte Rolf F,Locke Matthew J,Grimmer Ashley,Wodtke Pascal,Latimer Elizabeth,Frary Amy,Graves Martin J,Gallagher Ferdia A

Abstract

AbstractHyperpolarized carbon-13 MRI has shown promise for non-invasive assessment of the cerebral metabolism of [1-13C]pyruvate in both healthy volunteers and in patients. Exchange of pyruvate to lactate catalyzed by lactate dehydrogenase (LDH), and pyruvate flux to bicarbonate through pyruvate dehydrogenase (PDH), are the most widely studied reactionsin vivo. Here we show the potential of the technique to probe other metabolic reactions in the human brain. Approximately 50 s after intravenous injection of hyperpolarized pyruvate, high flip angle pulses were used to detect cerebral13C-labelled carbon dioxide (13CO2), in addition to the13C-bicarbonate (H13CO2-) subsequently formed by carbonic anhydrase. Brain pH weighted towards the extracellular compartment was calculated from the ratio of H13CO3-to13CO2in seven volunteers using the Henderson-Hasselbalch equation, demonstrating an average pH ± S.D. of 7.40 ± 0.02, with inter-observer reproducibility of 0.04. In addition, hyperpolarized [1-13C]aspartate was also detected in four of nine volunteers demonstrating irreversible pyruvate carboxylation to oxaloacetate by pyruvate carboxylase (PC), and subsequent transamination by aspartate aminotransferase (AST), with this flux being approximately 6% of that through PDH. Hyperpolarized [1-13C]alanine signal was also detected within the head but this was localized to muscle tissue in keeping with skeletal alanine aminotransferase (ALT) activity. The results demonstrate the potential of hyperpolarized carbon-13 MRI to assess cerebral and extracerebral [1-13C]pyruvate metabolism in addition to LDH and PDH activity. Non-invasive measurements of brain pH could be particularly important in assessing cerebral pathology given the wide range of disease processes that alter acid-base balance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3