Rhytidome- and cork-type barks of holm oak, cork oak and their hybrids highlight processes leading to cork formation

Author:

Armendariz IkerORCID,López de Heredia UnaiORCID,Soler MarçalORCID,Puigdemont Adrià,Mercè Ruiz Maria,Jové Patricia,Soto ÁlvaroORCID,Serra OlgaORCID,Figueras MercèORCID

Abstract

ABSTRACTThe periderm is basic for land plants due to its protective role during radial growth, which is achieved by the polymers deposited in the cell walls. In most trees, like holm oak, the periderm is frequently replaced by subsequent internal periderms yielding a heterogeneous outer bark made of a mixture of periderms and phloem tissues, known as rhytidome. Exceptionally, cork oak forms a persistent or long-lived periderm which results in a homogeneous outer bark of thick phellem cell layers known as cork. Here we use the outer bark of cork oak, holm oak, and their natural hybrids’ to analyse the chemical composition, the anatomy and the transcriptome, and further understand the mechanisms underlying periderm development. The inclusion of hybrid samples showing rhytidome-type and cork-type barks is valuable to approach to cork and rhytidome development, allowing an accurate identification of candidate genes and processes. The present study underscores that biotic stress and cell death signalling are enhanced in rhytidome-type barks whereas lipid metabolism and cell cycle are enriched in cork-type barks. Development-related DEGs, showing the highest expression, highlight cell division, cell expansion, and cell differentiation as key processes leading to cork or rhytidome-type barks.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3