Inferring gene regulatory networks using transcriptional profiles as dynamical attractors

Author:

Li Ruihao,Rozum Jordan C.,Quail Morgan M.,Qasim Mohammad N.,Sindi Suzanne S.ORCID,Nobile Clarissa J.ORCID,Albert RékaORCID,Hernday Aaron D.ORCID

Abstract

AbstractGenetic regulatory networks (GRNs) regulate the flow of genetic information from the genome to expressed messenger RNAs (mRNAs) and thus are critical to controlling the phenotypic characteristics of cells. Numerous methods exist for profiling mRNA transcript levels and identifying protein-DNA binding interactions at the genome-wide scale. These enable researchers to determine the structure and output of transcriptional regulatory networks, but uncovering the complete structure and regulatory logic of GRNs remains a challenge. The field of GRN inference aims to meet this challenge using computational modeling to derive the structure and logic of GRNs from experimental data and to encode this knowledge in Boolean networks, Bayesian networks, ordinary differential equation (ODE) models, or other modeling frameworks. However, most existing models do not incorporate dynamic transcriptional data since it has historically been less widely available in comparison to “static” transcriptional data. We report the development of an evolutionary algorithm-based ODE modeling approach that integrates kinetic transcription data and the theory of attractor matching to infer GRN architecture and regulatory logic. Our method outperformed six leading GRN inference methods, none of which incorporate kinetic transcriptional data, in predicting regulatory connections among TFs when applied to a small-scale engineered synthetic GRN inSaccharomyces cerevisiae. Moreover, we demonstrate the potential of our method to predict unknown transcriptional profiles that would be produced upon genetic perturbation of the GRN governing a two-state cellular phenotypic switch inCandida albicans. We established an iterative refinement strategy to facilitate candidate selection for experimentation; the experimental results in turn provide validation or improvement for the model. In this way, our GRN inference approach can expedite the development of a sophisticated mathematical model that can accurately describe the structure and dynamics of thein vivoGRN.Author SummaryThe establishment of distinct transcriptional programs, where specific sets of genes are activated or repressed, is fundamental to all forms of life. Sequence-specific DNA-binding proteins, often referred to as regulatory transcription factors, form interconnected gene regulatory networks (GRNs) which underlie the establishment and maintenance of specific transcriptional programs. Since their discovery, many modeling approaches have sought to understand the structure and regulatory behaviors of these GRNs. The field of GRN inference uses experimental measurements of transcript abundance to predict how regulatory transcription factors interact with their downstream target genes to establish specific transcriptional programs. However, most prior approaches have been limited by the exclusive use of “static” or steady-state measurements. We have developed a unique approach which incorporates dynamic transcriptional data into a sophisticated ordinary differential equation model to infer GRN structures that give rise to distinct transcriptional programs. Our model not only outperforms six other leading models, it also is capable of accurately predicting how changes in GRN structure will impact the resulting transcriptional programs. These unique attributes of our model, combined with “real world” experimental validation of our model predictions, represent a significant advance in the field of gene regulatory network inference.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3