Interpretation of Predictions in Drug-Gut Bacteria Interactions Using Machine Learning

Author:

Joshi Himanshu,Prakash Meher K

Abstract

AbstractGut bacteria play a crucial role in host’s metabolism. Both antibiotic and non-antibiotic drugs affect the gut bacteria ecosystem, which negatively affects the host’s health. Also, gut bacteria metabolize drugs, making them ineffective to the target. The structure-activity relationship studies of drugs have the scope to make them more effective, efficient, and specific to the target. Previous machine learning studies use the available data to predict the activity of drugs and gut bacteria on each other, but these models lack interpretability. Herein, we study the drug-gut bacteria interaction using interpretable machine learning models. In this study, we identify the most important physicochemical features of the drug, which decide the drug-gut bacteria interactions with each other. One of the key findings of this work is that the higher-positive charged drug molecules can inhibit the growth of gut bacteria more. In contrast, the higher-negative charged drug molecules have higher possibility to get metabolized by gut bacteria.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3