BIBSNet: A Deep Learning Baby Image Brain Segmentation Network for MRI Scans

Author:

Hendrickson Timothy J.ORCID,Reiners Paul,Moore Lucille A.ORCID,Perrone Anders J.,Alexopoulos Dimitrios,Lee Erik G.ORCID,Styner MartinORCID,Kardan Omid,Chamberlain Taylor A.ORCID,Mummaneni Anurima,Caldas Henrique A.,Bower Brad,Stoyell Sally,Martin Tabitha,Sung Sooyeon,Fair Ermias,Uriarte-Lopez Jonathan,Rueter Amanda R.ORCID,Yacoub Essa,Rosenberg Monica D.ORCID,Smyser Christopher D.ORCID,Elison Jed T.ORCID,Graham Alice,Fair Damien A.ORCID,Feczko EricORCID

Abstract

AbstractObjectivesBrain segmentation of infant magnetic resonance (MR) images is vitally important in studying developmental mental health and disease. The infant brain undergoes many changes throughout the first years of postnatal life, making tissue segmentation difficult for most existing algorithms. Here, we introduce a deep neural network BIBSNet (Baby andInfantBrainSegmentation NeuralNetwork), an open-source, community-driven model that relies on data augmentation and a large sample size of manually annotated images to facilitate the production of robust and generalizable brain segmentations.Experimental DesignIncluded in model training and testing were MR brain images on 84 participants with an age range of 0-8 months (median postmenstrual ages of 13.57 months). Using manually annotated real and synthetic segmentation images, the model was trained using a 10-fold cross-validation procedure. Testing occurred on MRI data processed with the DCAN labs infant-ABCD-BIDS processing pipeline using segmentations produced from gold standard manual annotation, joint-label fusion (JLF), and BIBSNet to assess model performance.Principal ObservationsUsing group analyses, results suggest that cortical metrics produced using BIBSNet segmentations outperforms JLF segmentations. Additionally, when analyzing individual differences, BIBSNet segmentations perform even better.ConclusionsBIBSNet segmentation shows marked improvement over JLF segmentations across all age groups analyzed. The BIBSNet model is 600x faster compared to JLF and can be easily included in other processing pipelines.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3