Human-exoskeleton interaction force estimation in Indego exoskeleton

Author:

Shushtari MohammadORCID,Arami Arash

Abstract

AbstractAccurate interaction force estimation can play an important role in optimization human-robot interaction in exoskeleton. In this work, we propose a novel approach for system identification of exoskeleton dynamics in presence of interaction forces as a whole multi-body system regardless of gait phase or any assumption on human-exoskeleton interaction. We hanged the exoskeleton through a linear spring and excited the exoskeleton joints with chirp commands while measuring the exoskeleton-environment interaction force. Several structures of neural networks have been trained to model the exoskeleton passive dynamics and estimate the interaction force. Our testing results indicated that a deep neural network with 250 neurons and 10 time delays can obtain sufficiently accurate estimation of the interaction force, resulting in 1.23 of RMSE on Z-normalized applied torques and 0.89 of adjustedR2.

Publisher

Cold Spring Harbor Laboratory

Reference27 articles.

1. Path control: a method for patient-cooperative robot-aided gait rehabilitation;IEEE Transactions on Neural Systems and Rehabilitation Engineering,2009

2. Robotic neurorehabilitation: a computational motor learning perspective;Journal of neuroengineering and rehabilitation,2009

3. Moreno, J.C. ; Asin, G. ; Pons, J.L. ; Cuypers, H. ; Vanderborght, B. ; Lefeber, D. ; Ceseracciu, E. ; Reggiani, M. ; Thorsteinsson, F. ; Del-Ama, A. ; et al. Symbiotic wearable robotic exoskeletons: the concept of the biomot project. In Proceedings of the International Workshop on Symbiotic Interaction. Springer, 2015, pp. 72–83.

4. An assistive control approach for a lower-limb exoskeleton to facilitate recovery of walking following stroke;IEEE transactions on neural systems and rehabilitation engineering,2014

5. Patient-cooperative strategies for robot-aided treadmill training: first experimental results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3