MIDASim: a fast and simple simulator for realistic microbiome data

Author:

He Mengyu,Zhao Ni,Satten Glen A.

Abstract

AbstractBackgroundAdvances in sequencing technology has led to the discovery of associations between the human microbiota and many diseases, conditions and traits. With the increasing availability of microbiome data, many statistical methods have been developed for studying these associations. The growing number of newly developed methods highlights the need for simple, rapid and reliable methods to simulate realistic microbiome data, which is essential for validating and evaluating the performance of these methods. However, generating realistic microbiome data is challenging due to the complex nature of microbiome data, which feature correlation between taxa, sparsity, overdispersion, and compositionality. Current methods for simulating microbiome data are deficient in their ability to capture these important features of microbiome data, or can require exorbitant computational time.MethodWe develop MIDASim (MIcrobiomeDAtaSimulator), a fast and simple approach for simulating realistic microbiome data that reproduces the distributional and correlation structure of a template microbiome dataset. MIDASim is a two-step approach. The first step generates correlated binary indicators that represent the presence-absence status of all taxa, and the second step generates relative abundances and counts for the taxa that are considered to be present in step 1, utilizing a Gaussian copula to account for the taxon-taxon correlations. In the second step, MIDASim can operate in both a nonparametric and parametric mode. In the nonparametric mode, the Gaussian copula uses the empirical distribution of relative abundances for the marginal distributions. In the parametric mode, an inverse generalized gamma distribution is used.ResultsWe demonstrate improved performance of MIDASim relative to other existing methods using gut and vaginal data. MIDASim showed superior performance by PER-MANOVA and in terms of alpha diversity and beta dispersion in either parametric or non-parametric mode. We also show how MIDASim in parametric mode can be used assess the performance of methods for finding taxa having differential abundance in a compositional model.ConclusionsMIDASim is easy to implement, flexible and suitable for most microbiome data simulation situations. MIDASim has three major advantages. First, MIDASim performs better in reproducing the distributional features of real data compared to other methods at both presence-absence level and relative-abundance level. MIDASim-simulated data are more similar to the template data than competing methods, as quantified using a variety of measures. Second, MIDASim makes few distributional assumption for the relative abundances, and thus can easily accommodate complex distributional features in real data. Third, MIDASim is computationally efficient and can be used to simulate large microbiome datasets.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3